The second-order convergence and stability of the scheme are proved with energy method. 用能量估计法证明了格式的稳定性及二阶收敛性;
Analysis of Uniform Convergence for Difference Scheme of a Singularly Perturbed Problem 一类奇异摄动问题差分格式的一致收敛性分析
The stability and convergence of the numerical scheme is analyzed, and the effect of the crossflow dissipation integral upon the calculation are examined. 文中分析了数值方法的稳定性与收敛性,并考查了横向耗散项对计算结果的影响。
It is feasible to increase accuracy of numerical solution and to raise convergence rate by upwind scheme with the third-order-accuracy and by Gauss-Seidel iteration method with relaxation factor. 文中采用三阶迎风格式和加松驰因子的Gauss-Seidel迭代,对提高数值算法的精度和收敛速度是可行的。
A Study on Convergence of T-shape Implicit Scheme T形隐格式的收敛性分析
Using the perfect properties of Radial Basis Function ( RBF) neural networks, such as approximation any non-linear mapping and quick convergence, a new scheme is proposed to estimate scaling factors for radar CFAR detectors. 利用径向基函数(RBF)网络具有良好的逼近任意非线性映射的能力和快速收敛的特点,提出了一种精确估计雷达恒虚警检测器标度因子的通用方法。
The effect on the numerical solution caused by the changes of the model used in analysis is discussed in detail as well as the convergence of the numerical scheme and the calculation scheme of the sensitivity coefficients. 详细讨论了不同的反分析模型对数值结果的影响以及数值解的收敛性及灵敏度系数计算等问题。
The stability and convergence of a new difference scheme 一个新的差分格式的稳定性和收敛性
Numerical solution of a singularly perturbed problem for the semilinear parabolic differential equation with parabolic boundary layers is discussed, A nonlinear two-level difference scheme is constructed on the special non-uniform grids. The uniform convergence of this scheme is proved and some numerical examples are given. 本文讨论具有抛物边界层的半线性抛物型方程奇异摄动问题的数值解法,在非均匀网格上构造了两层非线性差分格式,证明了差分格式是一致收敛的,给出了一些数值例子。
And φ satisfies the inequality: In the § 2.4 we give the wavelets coefficient theorem, and prove the convergence of wavelets coefficient equal to the convergence of basic subdivision scheme. §2.4中给出定理2.2的证明过程,证明了小波参数精密地依靠基本的细分算法。正则多分辨率近似的收敛性等于这个基本细分算法的收敛性。
Finally, the long-time stability and convergence of this finite difference scheme are also analysed in the nonautonomous system case. 最后,在系统非自治的情形下,得到了此有限差分格式的长时间稳定性和收敛性。
The convergence of the scheme and the stability of the reduced difference equation are proved. 证明了格式的收效性和退化差分方程的稳定性。
Finally, long-time stability and convergence of the finite difference scheme is proved. 最后,得到有限差分格式的长时间稳定性和收敛性。
A fully-discrete scheme is given and the convergence of the scheme is analyzed. 给出了此方法的全离散格式,并分析了该全离散格式的收敛性。
In this chapter, the existence and uniqueness of the solution to the scheme, the convergence and stability to the scheme are proved by using discrete functional analysis theory, the apriority estimate method and the Brouwer fixed-point theory. 在本章中,运用离散泛函分析理论,结合先验估计、Brouwer不动点原理证明了相应差分格式解的存在唯一性、收敛性和稳定性。
In the second part, with a function transformation we transform the nonlinear problem to linear problem, then construct the difference scheme for the latter. We analyze the stability and convergence of the difference scheme with the maximum principle. 本文第二部分利用函数变换的方法先将非线性问题转化为线性问题,然后对线性问题建立差分格式,用极大值原理方法分析了差分格式的稳定性和收敛性。
An Optimum Method for Convergence of Iteration Scheme of Calculating Pressure in Hydraulic Transients of Axial Flow Turbines 解决轴流式机组过渡过程水击压力迭代计算收敛性的优化方法
Uniform Convergence for the Difference Scheme in the Conservation Form of Ordinary Differential Equation with a Small Parameter 小参数常微分方程守恒型差分格式的一致收敛性
This paper expanded 4-point subdivision scheme with two parameters for curve design, presented the 4-point subdivision surface scheme with two parameters and analyzed the convergence of the scheme. 将双参数四点细分曲线方法进行推广,提出了基于双参数四点细分法的曲面造型方法,并对其收敛性进行了分析。
Convergence of an approximation scheme for an image processing model with time-delay regularization 带有时滞正则项的图像处理模型近似格式的收敛性
To overcome the genetic algorithm ( GA)' s premature convergence, the Metropolis scheme was introduced into GA. 针对遗传算法的过早收敛,我们采用混合优化算法,将模拟退火算法的Metropolis接受准则引入到遗传算法中。
In this paper, we use a novel technique to study the convergence of three-step iterative scheme for asymptotically quasi-nonexpansive mapings with error members in Banach spaces. 应用一个新的方法研究了Banach空间渐近拟非扩张映象具误差的三步迭代格式的收敛性。
D linear discrete system theory is used in open closed loop iterative learning control. A new iterative learning control scheme is presented, and convergence condition of the scheme is given and proved. 将2-D线性离散系统理论应用于开闭环迭代学习控制中,设计出一种新型的迭代学习控制方案,给出并证明了其控制律及收敛条件。
Uniform Convergence of ExPonential Box Scheme for a Self Adjoint Problem with a Small Parameter 小参数自共轭问题ExponentialBox格式的一致收敛性
A new kind of characteristic-difference scheme for convection-dominated diffus-ion equations is constructed by combining characteristic method with the finite-difference method and with the skew linear interpolation method. The convergence of the characteristic-difference scheme is studied. 将特征线法和有限差分法相结合,借助于斜线性插值,分别给出了求解线性和非线性对流占优扩散方程的一种新的特征差分格式,并研究了算法的收敛性。
Last, the paper introduced an improved particle swarm optimization to optimize model parameters. ( 2) According to the existing hydrological data, the paper formulated the watershed runoff and convergence forecasting scheme. 最后,采用一种改进的粒子群算法,对产流模型参数进行优选。(2)根据现有的水文资料,分别编制流域的产、汇流预报方案。
Finally, we apply a characteristics-mixed finite element method, which was proposed by T. Arbogast and M. F. Wheeler, to solve unsteady-state convection-diffusion equations. We prove the convergence of the scheme. 最后,基于T.Arbogast和M.F.Wheeler建立的特征-混合元方法,我们给出一种特征-混合元格式来近似求解不稳定状态对流-扩散方程,此格式保持局部质量守恒性。
When formulating convergence scheme, the paper calculated the watershed convergence by using the DHF mode and the experience unit hydrograph model, and compared the two schemes. 编制汇流方案时,分别应用DHF汇流模型和经验单位线进行汇流计算,并将两种汇流方案进行对比。
Secondly, convergence scheme and security authentication method in 3G-WLAN was introduced. By analyzing the EAP-AKA protocol applied in 3G-WLAN, we identified the security weakness and vulnerability, which may suffer being attacked possibly. 其次,介绍了3G-WLAN互联网络的的融合方案以及融合后的安全认证方法,对3G-WLAN互联网络采用的EAP-AKA协议进行了分析,指出其存在的安全缺陷和可能受到的攻击。
Numerical results show that the compact difference scheme in this paper is a high-accuracy, stable and convergence difference scheme. 数值实验结果表明本文建立的紧差分格式是一种高精度的、稳定且收敛的差分格式。